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Abstract The presence of different batches is routinely observed in microarray stud-
ies and is well known that non-biological variability potentially confounding biolog-
ical differences is commonly related to such batches. The removal of these undesired
effects for a non-biased inference is often accomplished either with normalization
methods that do not take into account all the available information, or with models
that rely on strong parametric assumptions. We have developed a new method for the
batch effects removal, named ber, which is based on a two-stage procedure for the
estimation of location and scale parameters. Batch effects and biological differences
are estimated using a regression approach and bagging, therefore mild distributional
assumptions are required. We have compared ber with other commonly employed
methods and we have shown that ber can bring to a higher power in detecting dif-
ferentially expressed genes. The application of ber to a real microarray study led to
interpretable biological results. The method is implemented in the R package ber,
available through CRAN repository.

Keywords High dimensional data · Normalization · Gene expression profiling ·
Bagging

1 Introduction

Systematic variations in microarray data are commonly observed when sets of chips
belong to different sources or are assayed under different settings. Broadly speaking,
we can define a batch as a set of chips generated under similar conditions. The devia-
tions from the biological signal of interest arising from these different conditions are
known as batch effects. While it is important to aggregate data from many batches
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to get more reliable and powerful analyses, studies that ignore the batch effects can
be biased. For example, in the comparison of two or more groups batch effects can
easily generate false positives and false negatives, or produce misclassification errors.
Zilliox and Irizarry [23] and McCall et al. [15] considered the problem of the batch
effects for the determination of the genes expressed or unexpressed in a specific tissue
or cell type.

There are many approaches to handle batch effects. In a straightforward manner
the batches can be considered as a covariate in a standard linear model. This strategy,
for example, is a suggestion in the package limma (available through bioconductor).
Usually in fact when biological or clinical covariates are available it is of interest
to estimate their influence on the main aspect being investigated. However, batch
effects are undesired non-biological experimental effects that should not exist. For a
non-biased inference many proposals suggest to estimate and remove them.

The methods for the removal of the batch effects can be classified in two main
groups: methods working on normalized data and methods embedding the removal
of the batch effects in the normalization process.

Many currently employed normalization methods such as RMA [9] or VSN [8]
do not take into account that data are gathered together from different batches. The
following approaches are applied on data normalized with such methods with the pur-
pose to eliminate the batch effects. Mean centering is a common method to remove
batch effects after normalization. For each gene and each subject the means of the ex-
pression levels in the batches are subtracted from the normalized values. This method
is implemented in the pamr package (available through CRAN, www.r-project.org).
In dchip software (http://biosun1.harvard.edu/complab/dchip) the normalized values
in each batch are mean centered and then scaled to obtain standard deviations equal
to one (standardization). Benito et al. [2] used a distance weighted discrimination
method (DWD) to remove batch effects. Johnson et al. [11] developed an Empirical
Bayes method (combat) for removing location and scale batch effects (see the biocon-
ductor package sva). For merging two or more gene expression studies [19] proposed
the use of a block linear model and of a procedure based on clustering (XPN). When
reference samples are available ratio-based methods can be developed (see [13]).

In the second group of methods estimation and removal of batch effects are em-
bedded into the normalization procedure. McCall et al. [14] proposed fRMA, an algo-
rithm that allows to combine data for downstream analysis. Their method is based on
a reference distribution and a model that uses random effects to explain the variability
in probe effects across batches. Mecham et al. [16] proposed a general normalization
framework where all the variables available for the study are employed. They de-
veloped SNM, an iterative algorithm for the simultaneous fitting of biological and
study-specific adjustment variables.

The above mentioned methods show great differences in the adopted assumptions
and in the amount of employed information. Mean centering, standardization and
DWD do not assume a particular shape for the distribution of the gene expression
levels, however, they use only the information about the batches and they are not able
to use other information from biological covariates. XPN is based on a linear model
and assumes that the error terms follow a Normal distribution, but the authors did not
model information from biological covariates. Combat can manage either informa-
tion on batches and from biological covariates, but, however, makes strong parametric
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assumptions (Normal and Inverse-Gamma distribution are used and graphical checks
are suggested to assess the fit of the model).

In this paper we propose a method for the removal of location and scale batch
effects from normalized data. Our purpose is to introduce a method based on weak
model assumptions that is able to manage all the biological information available. We
named such method ber (batch effects removal). We develop a two stage procedure
where location effects are estimated at the first stage while batch scale effects are
estimated at second stage. In both stages we use linear models accounting for batches
and other biological variables of interest. We shall show that ber is effective in mi-
croarray context where the number of variables is huge and the sample size is low.
In Sect. 2 we introduce the method. Section 3 is devoted to a simulation study for
comparing ber with other commonly employed methods. In Sects. 4 and 5 we apply
ber to real microarray studies. Some final considerations are given in Sect. 6.

2 Model and Method

The method proposed in this paper is based upon an extension of the model used by
[11] for the estimation and removal of the batch effects. While the assumed models
are similar, for the estimation of the parameters we propose a completely different
method. Two procedures are described: one is suited for supervised analyses, the
other for unsupervised analyses.

Johnson et al. [11] related the expression level of a gene in a subject to an overall
mean expression for that gene, the influence of the biological covariates of interest
and location/scale batch effects. Normally distributed error terms were adopted to
model the variability not explained by such factors. They used an Empirical Bayes
method for the estimation of the parameters. We propose instead a two stage proce-
dure. This will give a computational advantage assuring at the same time an effective
method in HDLSS (High Dimension Low Sample Size) contexts.

Let us denote with g the number of genes, with n the number of subjects and with
mb the number of batches. Let Y be the n × g matrix with the observed expression
levels Y(i, j), (i = 1, . . . , n and j = 1, . . . , g). Denote with Xb an n × mb matrix
where the element (i, l) is equal to one if subject i belongs to batch l and zero oth-
erwise (l = 1, . . . ,mb), and with Bb the corresponding mb × g matrix of parameters.
Similarly we denote with Xc the n × mc design matrix (without the column for the
intercept) for modeling the effects of the biological covariates and with Bc the mc ×g

matrix with the corresponding parameters. We want to fit the linear model

Y = XB + E (1)

where X = [Xb Xc] is a full rank matrix, B ′ = [B ′
b B ′

c] and E is a matrix of error
terms with zero expectation.

A least squares estimate of this multivariate linear model is

B̂ = X+Y (2)

where X+ is the generalized Moore–Penrose inverse of X. Such estimate corresponds
to the matrix with minimum norm among those minimizing the residuals sum of
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squares (see [1]). A formal proof can be obtained using the singular value decompo-

sition of a matrix. B̂ can be partitioned as B in B̂ ′ = [B̂ ′
b B̂ ′

c].
At second stage we want to estimate the scale batch effects. Once B̂ has been

obtained we can consider the residuals given by the matrix Ê = Y − XB̂ . These
residuals have zero expectation because XB̂ is a correct estimator of XB . However,
a batch effect affecting the variability of these residuals could still be present. To
estimate the scale batch effects we use a second regression on the squared residuals
(for the use of a second regression on the residuals in a different context see [7]). The
squared residuals are given by Ê2 = Ê ◦ Ê with ◦ denoting the Hadamard product.
Similarly to what we did in the first stage, the expected value of Ê2(i, j) can be model
through the expression

δ2
ij =

mb∑

l=1

Xb(i, l)Db(l, j)

where now Db is an mb ×g matrix of parameters used to describe scale batch effects.
The model can be written in matrix form as

Ê2 = XbDb + F (3)

F being a matrix of errors with zero expectation. A least squares solution is

D̂b = X+
b E2

and we can estimate δ2
ij by

δ̂2
ij =

mb∑

l=1

Xb(i, l)D̂b(l, j).

Note that D̂b(l, j) is the mean of the elements E2(i, j) in the batch l. This ensures
that D̂b(l, j) is positive and therefore that the elements of XbD̂b are positives. This
cannot be ensured if the extended model

Ê2 = XD + F with D′ = [D′
b D′

c]
is employed and unconstrained least squares are used.

In summary our two-stage procedure estimates B and Db with two regressions in
succession; first it estimates B and then with a regression on the squared residuals it
estimates Db . For gene j , j = 1, . . . , g, let us denote with σ̂ 2

j = (1/n)
∑n

i=1 δ̂2
ij the

mean of its estimated scale batch effects. Once these estimates have been obtained
the data are transformed to eliminate the batch effects through the following steps:

1. Y1 = Y − XB̂;
2. Y2 = Y1 ◦ �̂−1 where �̂−1 is an n × g matrix with elements �̂−1(i, j) = 1/δ̂ij ;

3. Y3 = Y2 ◦ �̂2 where �̂2(i, j) =
√

σ̂ 2
j ;

4. Y4 = Y3 + 1
n

1XbB̂b + XcB̂c where 1 is an n × n matrix of ones.
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Similarly to [16] we propose a slightly different procedure for unsupervised analyses.
In such exploratory analyses the effects of the biological covariates are not of direct
interest and we can consider only the information about the batches. Using B̂ = B̂b =
X+

b Y the procedure is again given by the three steps above with step 4 replaced by
step

4b. Y4 = Y3 + 1
n

1XbB̂b .

2.1 Bagging

The use of bagging was initially proposed by [3]. The idea is to obtain an aggregated
predictor through the average of bootstrap versions of a proposed predictor. Breiman
showed that the aggregated predictor has better accuracy. Schäfer and Strimmer [17]
used these techniques to build estimators of the partial correlation matrix for infer-
ring gene association networks. In particular they proposed three bagging estimators
which are based on the use of the pseudo inverse. This led us to employ such tool
in our method. We propose two procedures for bagging our method. Bootstrap sam-
ples of size n were created sampling with replacement the subjects from the original
sample.

The first procedure is implemented as follows. For each bootstrap sample v,
v = 1, . . . , V we get the estimates B̂v and D̂v of the matrices B and D as described
previously. The bagging estimators are then

B̂bag =
V∑

v=1

B̂v

V
, D̂bag =

V∑

v=1

D̂v

V
.

The steps for the removal of the batch effects are then applied using such matrices
instead of B̂ and D̂, respectively. We call such procedure full bagging.

In the second procedure the estimates B̂v for v = 1, . . . , V are obtained as before
but the normalization steps are applied on

B̂bag =
V∑

v=1

B̂v

V
, D̂bag = X+Ê2

bag

where Êbag = Y − XB̂bag. We call such procedure partial bagging.

3 Simulation Study

Real data sets do not allow the knowledge of true differentially expressed genes and
the behavior of false positives and false negatives can be better understood using sim-
ulated data. For this purpose we designed a simulation study where the generated data
had characteristics similar to those of real microarray applications. We considered
two settings with different assumptions. In the first setting the data were generated
for 54675 independent variables (as for GeneChip Human Genome U133 Plus 2.0
Arrays). In the second setting a smaller study with 1000 correlated variables was de-
veloped. We considered the case of a two groups comparison with samples belonging
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to two different batches. Since the methods proposed in this paper will be applied
on normalized data, we compared them with three similar commonly used methods:
mean centering, standardization and combat. These were the methods with optimum
performances in the comparison analyses performed by [4] or [13]. Partial bagging
and full bagging used 100, 150 or 200 bootstrap samples.

To detect differentially expressed genes we used the shrinkage approach proposed
by [18] and to avoid false positives we chose to control the local false discovery rate
(see [6, 22]). Genes with an estimated local false discovery rate below 0.05 were con-
sidered differentially expressed. The number of true differentially expressed genes
was in line with the model proposed by Efron for which a small proportion of differ-
entially expressed genes is assumed. Each design was simulated 150 times.

For the first setting the means of the genes in the real study described in Sect. 4
were used as means of the simulated variables. We supposed 500 differentially ex-
pressed genes, with differences in expression (ξj ) generated from a Cauchy distribu-
tion with location parameter 2 and scale parameter 1. With such distribution many pa-
rameters are close to zero and the detection of the respective differentially expressed
genes more difficult. The aim was to see which method provided the greatest power
in such situation. Each group had a sample size equal to 18. In the balanced case nine
subjects belonged to the first batch and nine to the second one. In the unbalanced
cases the subjects were distributed in the batches as follows: three and 15 in the first
group, 15 and three in the second group, or six and 12 in the first group, 12 and six
in the second group. Location batch effects were sampled from a Cauchy distribution
with location parameter 0 and scale parameter 1. Similarly to [16] errors were gener-
ated from a Normal distribution with mean 0 and standard deviation equal to

√
0.2.

Scale batch effects were simulated from a Uniform distribution between 0.5 and 2. In
this way the variance of the errors in a specific batch can be dilated or shrunk.

In the second setting the means of the genes were generated from a Normal dis-
tribution with mean 6 and standard deviation

√
0.4. We supposed 100 differentially

expressed genes, with differences in expression (ξj ) generated from a Cauchy distri-
bution with location parameter 2 and scale parameter 1. Sample sizes and allocation
of the subjects into batches were set as above. Location batch effects were sampled
from an Inverse Gamma distribution with shape parameter 2.5 and scale parame-
ter 1.5 (this distribution is often used with empirical Bayes methods). Errors were
generated from a Multivariate Normal distribution with a null mean vector and posi-
tive definite covariance matrix with variances between 0.5 and 1.5. Such matrix was
generated with the function genPositiveDefMat in the R package clusterGeneration
(see [10]). Using these errors the simulated genes are correlated. Scale batch effects
were simulated from a Uniform distribution between 0.5 and 2.

3.1 Simulation Results

For all methods the false positive rate (FPR) was very close to zero and substantial
differences can be noted only with regard to the true positive rate (TPR). Therefore
we show only the results about the TPRs. In Tables 1 and 2 we report the means
of the TPRs over the 150 simulations and the respective standard errors. The stan-
dardization method had always the worst performances. This was expected since a
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Table 1 This table shows the TPRs for the simulations on the 54675 independent variables generated as
described in the first setting

n1 = n2 = 18
(3 − 15;15 − 3)

n1 = n2 = 18
(6 − 12;12 − 6)

n1 = n2 = 18
(9 − 9;9 − 9)

ber full bagging 100 mean 0.8364 0.8846 0.8931

se 0.0014 0.0010 0.0010

ber full bagging 150 mean 0.8376 0.8845 0.8932

se 0.0014 0.0011 0.0010

ber full bagging 200 mean 0.8376 0.8845 0.8934

se 0.0013 0.0010 0.0010

ber partial bagging 100 mean 0.8384 0.8855 0.8942

se 0.0014 0.0010 0.0010

ber partial bagging 150 mean 0.8386 0.8855 0.8942

se 0.0013 0.0011 0.0010

ber partial bagging 200 mean 0.8383 0.8853 0.8943

se 0.0014 0.0011 0.0010

ber mean 0.8396 0.8857 0.8944

se 0.0014 0.0011 0.0010

combat mean 0.8239 0.8742 0.8836

se 0.0014 0.0011 0.0010

mean centering mean 0.7838 0.8527 0.8747

se 0.0015 0.0013 0.0010

standardization mean 0.6939 0.7513 0.7561

se 0.0038 0.0040 0.0034

simple standardization has often the effect of flattening the fold changes. Using mean
centering the performances improved, but such method uses only information about
the means in the batches and therefore was outperformed by combat and ber in both
settings. In the first setting ber and its bagging version gave TPRs which are slightly
higher than those of combat. As the correlation between the variables increased (sec-
ond setting) also the gap between combat and such methods increased. The perfor-
mances of all the methods improved with the balancing of the batches in each group.

4 A Multi-Center Leukemia Study

In this section we consider the data set analyzed by [12] which is freely available
at Gene Expression Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo/)
with accession number GSE15434. To get the data we used GEOquery [5]. The data
were normalized with RMA. In the data set there were 251 pediatric leukemia sam-
ples from three centers: Dresden, n = 78; Munich, n = 96; Ulm, n = 77. Affymetrix
HG-U133 Plus 2.0 chips containing 54675 probe sets were used in these experiments.
One of the main purposes of the authors was to study the nucleophasmin gene mu-
tations, NPM1. There were 138 positive subjects (NPM1-mutated) and 113 negative

http://www.ncbi.nlm.nih.gov/geo/
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Table 2 This table shows the TPRs for the simulations on the 1000 correlated variables generated as
described in the second setting

n1 = n2 = 18
(3 − 15;15 − 3)

n1 = n2 = 18
(6 − 12;12 − 6)

n1 = n2 = 18
(9 − 9;9 − 9)

ber full bagging 100 mean 0.4864 0.5488 0.5768

se 0.0086 0.0095 0.0098

ber full bagging 150 mean 0.4976 0.5464 0.5802

se 0.0083 0.0099 0.0094

ber full bagging 200 mean 0.4918 0.5437 0.5775

se 0.0083 0.0104 0.0095

ber partial bagging 100 mean 0.4973 0.5561 0.5859

se 0.0087 0.0096 0.0092

ber partial bagging 150 mean 0.4944 0.5492 0.5828

se 0.0085 0.0102 0.0098

ber partial bagging 200 mean 0.4934 0.5534 0.5862

se 0.0085 0.0099 0.0096

ber mean 0.4973 0.5507 0.5827

se 0.0087 0.0098 0.0092

combat mean 0.4519 0.5070 0.5355

se 0.0087 0.0110 0.0102

mean centering mean 0.4058 0.4647 0.5054

se 0.0085 0.0102 0.0103

standardization mean 0.3612 0.4176 0.4416

se 0.0091 0.0109 0.0103

subjects (NPM1-unmutated). The authors used a linear model and restricted maxi-
mum likelihood for comparing the two groups while taking into account that samples
belonged to three different centers. With such approach the batch effects were esti-
mated but not removed.

The batch effects can be seen in Fig. 1(a) where the samples in the three largest
groups identified through the dendrogram are prone to be clustered accordingly to
their respective sources. We used ber for the removal of the batch effects. Figure 1(b)
shows that the samples from the three centers are now well intermixed in the largest
groups highlighted by the dendrogram.

We searched for differentially expressed probe sets as described in Sect. 3. If the
batch effects were removed using combat, then 398 probe sets were identified as dif-
ferentially expressed. Using mean centering the differentially expressed probe sets
were 392. Instead applying ber to the normalized data the number of differentially
expressed probe sets increased to 418. Similarly using bagging (full bagging, 200
bootstrap samples) we got 423 differentially expressed probe sets. These results high-
light that our methods can lead to an appreciable increase in power. Let us remark that
[12] reported a consensus signature for robustness across the three laboratories of 301
probe sets. Using our methods we obtained a great power in detecting differentially
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Fig. 1 GSE15434’s data set (Color figure online)

expressed probe sets, being sure at the same time that batch effects were not only
estimated but also removed.

Among our 423 differentially expressed probe sets there are all the important
genes discussed by [12]. Moreover we can enlarge the HOX family mentioned by
the authors adding the genes HOXA11 and HOXB8 to their list. Therefore our find-
ings lead to interpretable biological results and can strengthen their conclusions.
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Remark 1 The results from the simulation studies in the previous section show that
ber and its bagging versions lead to a number of false positives close to zero. How-
ever, for the GSE15434’s data set we do not know which are the genes really differ-
entially expressed and therefore the observed increase in power could be due to an
increase in false positives. In the next section we avoid such possible bias comparing
the methods on the basis of their prediction performances.

5 A Breast Cancer Study

We now analyze another data set freely available from GEO repository. The data set
with accession number GSE2990 concerns a breast cancer study on 189 patients. The
histologic grade is an important prognostic factor and [21] studied how it is associ-
ated with gene expression profiles of breast cancers. Affymetrix HG-U133A chips
containing 22283 probe sets were used in this study. In their paper the CEL files were
normalized separately in four groups, according to the institutions (Oxford = OXF
or Uppsala = KI) and the batches of measurements (untreated or tamoxifen-treated
series). We repeated the study normalizing all together the 167 samples for which
the grade information is available: KIT n = 21, KIU n = 64, OXFT n = 38, OXFU
n = 44. Specifically our interest was in the prediction of tumor grade (histological
grade status 1, 2 or 3) from gene expression profiles.

Predictions were done using “shrunken centroids discriminant analysis” also
known as PAM (Prediction Analysis for Microarrays) algorithm. We used the imple-
mentation proposed by [20] in the CMA bioconductor package. The error rate was
evaluated on 50 training/learning sets. These were obtained through 5-fold cross-
validation repeated 10 times. The error rate used to measure the performances was
the misclassification rate. Hyperparameter tuning was performed by inner cross-
validation (3-folds) on the learning sets, using the default grid of values in the CMA
package.

The misclassification error rates were: standardization 0.4085, mean centering
0.3970, combat 0.3576, ber 0.3143, full bagging ber (200 samples) 0.3130. The two
versions of ber have therefore the best predictive performances, followed by combat
and finally by mean centering and standardization.

6 Discussion

We have proposed a two-step procedure for the removal of batch effects. In the first
step we can consider only the effects of the batches or also the effect of other biolog-
ical variables. In the second step we model only the scale effects of the batches. Let
us note that similarly to [16] a further generalization of our procedure is possible: the
effects of other non-biological study variables can be easily included in the proposed
model through the design matrix Xb and the matrix of parameters B . This, in princi-
ple, can lead to a full normalization method. However, the purpose of this paper was
the development of a method for the removal of the batch effects from normalized
data. This allows the removal of the batch effects using again many well established
normalization methods such RMA or others.
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Our estimation procedure is not based on a specific parametric distribution of the
expression levels. Avoiding strong assumptions on the data our strategy can be ap-
plied to a wide range of microarray studies. Moreover, since we do not use any spe-
cific parametric distribution we do not need to estimate the related parameters and
therefore our procedure has a low computational cost.

A fundamental task when analysing microarray data is the detection of differen-
tially expressed genes. We investigated the impact of our approach with reference
to such goal, comparing it with other methods in terms of TPR (and FPR). Real and
simulations studies show that ber can outperform the other methods in many settings.
Such optimality was noted also in the analysis of a class prediction problem. In partic-
ular ber and its bagging versions had the best performances for correlated variables,
which is the case for microarray data. In our simulations the use of bagging gave only
a slight advantage over the simple ber, but bagging is, however, recommended in real
applications to get robust results.
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